Pyrethroids Numeric Trigger Discussion

5 October 2016

8:30-10:30 am

Species Sensitivity Distribution

Water Quality Criteria

UCD Criteria	1 st percentile		5 th pe	Basin Plan	
	Acute (ng/L)	Chronic (ng/L)	Acute (ng/L)	Chronic (ng/L)	1/10 LC ₅₀ (ng/L)
Bifenthrin	0.06	0.01	0.8	0.1	0.05
Cyfluthrin	0.07	0.01	0.8	0.2	0.055
Cypermethrin	0.04	0.01	1	0.3	0.056
Esfenvalerate	0.2	0.03	2	0.3	0.085
Lambda- cyhalothrin	0.03	0.01	0.7	0.3	0.03
Permethrin			6	1	0.7

Ambient Data from the Delta and Tributaries (Weston)

Whole Water concentrations -Without bioavailability calculation

Expected Sediment Concentration

- $Koc = C_{sediment}/C_{water}$
- $C_{\text{sediment}} = Koc^*C_{\text{water}}$
- C_{sediment} = Koc*(potential water quality criteria)
- Compare C_{sediment} to sediment toxicity values

Expected Sediment Concentration

	Bif	Cyf	Сур	Esf	L-Cy	Per
Koc (L/kg)	4,228,000	3,870,000	3,105,000	7,220,000	2,056,000	6,075,000
1 st Chronic WQC (ng/L)	0.01	0.01	0.01	0.01	0.03	1
5 th Chronic WQC (ng/L)	0.1	0.2	0.3	0.3	0.3	1
1 st - C _{sediment} (ug/g OC)	0.042	0.039	0.031	0.072	0.062	6.075
5 th – C _{sediment} (ug/g OC)	0.423	0.774	0.932	2.166	0.617	6.075
Sediment LC ₅₀ (ug/g OC)	0.43	1.08	0.34	1.53	0.45	8.68
Sediment MATC (ug/g OC)	0.03	0.015	0.25	0.24	0.054	0.43

Other Percentile Acute Criteria

	1 st perc Acute WQC (ng/L)	2 nd perc Acute WQC (ng/L)	2.5 perc Acute WQC (ng/L)	3 rd perc Acute WQC (ng/L)	5 th perc Acute WQC (ng/L)	H. azteca LC50 (ng/L)
Bifenthrin	0.06	0.2	0.3	0.4	0.8	0.5
Cyfluthrin	0.07	0.2	0.3	0.4	0.8	0.55
Cypermethrin	0.04	0.2	0.3	0.5	1	0.56
Esfenvalerate	0.2	0.5	0.7	0.9	2	0.85
Lambda- cyhalothrin	0.03	0.1	0.2	0.3	0.7	0.3
Permethrin		-	-	-	6	7

Other Considerations

Peer Review

Armbrust

- 1st percentile appears overly protective based upon conservatism already in the method (e.g., 3 year exceedance frequency, 4-day averaging period)
- Use of 5th percentile is equally justified scientifically as the 1st, consistent with other methods, and would likely provide adequate protection of beneficial uses

Coats

• The 1st percentile criteria developed for the pyrethroids will protect the beneficial uses of the waterways; they will also be protective of sensitive species, without being unnecessarily conservative.

Jenkins

- Use of 1st percentile is inconsistent with the derivation of other acute and chronic criteria for which there is sufficient data to use the SSD approach
- The premise for using the SSD approach is a robust statistical analysis using all of the available toxicity values that meet data quality criteria. It seems arbitrary to use the 1st percentile for the sole purpose of deriving a toxicity value that is less a single value of unknown significance.
- The 5th percentile is appropriate to reduce the probability of both Type I and Type II error in estimating the acute value.

Other Considerations

- Temperature effects are not accounted for
 - Pyrethroids are more toxic at lower temps
- Uncertainties in partition coefficients
- Other species have similar sensitivity to Hyalella
 - Mysid shrimp
 - Gammarus species
 - Sublethal effects on fish

Schedule

- Oct: Notice & materials for December Board Meeting
- Dec 5/6: Board comment hearing
- Dec: Official Comments Due
- Jan: Responses to comments posted
- Feb: Board adoption hearing